skip to main content


Search for: All records

Creators/Authors contains: "Fang, Ke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hypernebulae are inflated by accretion-powered winds accompanying hyper-Eddington mass transfer from an evolved post-main-sequence star onto a black hole or neutron star companion. The ions accelerated at the termination shock—where the collimated fast disk winds and/or jet collide with the slower, wide-angled wind-fed shell—can generate high-energy neutrinos via hadronic proton–proton reactions, and photohadronic (pγ) interactions with the disk thermal and Comptonized nonthermal background photons. It has been suggested that some fast radio bursts (FRBs) may be powered by such short-lived jetted hyper-accreting engines. Although neutrino emission associated with the millisecond duration bursts themselves is challenging to detect, the persistent radio counterparts of some FRB sources—if associated with hypernebulae—could contribute to the high-energy neutrino diffuse background flux. If the hypernebula birth rate follows that of stellar-merger transients and common envelope events, we find that their volume-integrated neutrino emission—depending on the population-averaged mass-transfer rates—could explain up to ∼25% of the high-energy diffuse neutrino flux observed by the IceCube Observatory and the Baikal Gigaton Volume Detector Telescope. The time-averaged neutrino spectrum from hypernebula—depending on the population parameters—can also reproduce the observed diffuse neutrino spectrum. The neutrino emission could in some cases furthermore extend to >100 PeV, detectable by future ultra-high-energy neutrino observatories. The large optical depth through the nebula to Breit–Wheeler (γγ) interaction attenuates the escape of GeV–PeV gamma rays coproduced with the neutrinos, rendering these gamma-ray-faint neutrino sources, consistent with the Fermi observations of the isotropic gamma-ray background.

     
    more » « less
  2. Abstract

    The Galactic diffuse emission (GDE) is formed when cosmic rays leave the sources where they were accelerated, diffusively propagate in the Galactic magnetic field and interact with the interstellar medium and interstellar radiation field. GDE in γ-rays (GDE-γ) has been observed up to subpetaelectronvolt energies, although its origin may be explained by either cosmic-ray nuclei or electrons. Here we show that the γ-rays accompanying the high-energy neutrinos recently observed by the IceCube Observatory from the Galactic plane have a flux that is consistent with the GDE-γ observed by the Fermi-LAT and Tibet ASγ experiments around 1 TeV and 0.5 PeV, respectively. The consistency suggests that the diffuse γ-ray emission above ~1 TeV could be dominated by hadronuclear interactions, although a partial leptonic contribution cannot be excluded. Moreover, by comparing the fluxes of the Galactic and extragalactic diffuse emission backgrounds, we find that the neutrino luminosity of the Milky Way is one-to-two orders of magnitude lower than the average of distant galaxies. This finding implies that our Galaxy has not hosted the type of neutrino emitters that dominates the isotropic neutrino background at least in the past few tens of kiloyears.

     
    more » « less
  3. Abstract

    High-energy neutrino andγ-ray emission has been observed from the Galactic plane, which may come from individual sources and/or diffuse cosmic rays. We evaluate the contribution of these two components through the multimessenger connection between neutrinos andγ-rays in hadronic interactions. We derive maximum fluxes of neutrino emission from the Galactic plane usingγ-ray catalogs, including 4FGL, HGPS, 3HWC, and 1LHAASO, and measurements of the Galactic diffuse emission by Tibet ASγand LHAASO. We find that the IceCube Galactic neutrino flux is larger than the contribution from all resolved sources when excluding promising leptonic sources such as pulsars, pulsar wind nebulae, and TeV halos. Our result indicates that the Galactic neutrino emission is likely dominated by the diffuse emission by the cosmic-ray sea and unresolved hadronicγ-ray sources. In addition, the IceCube flux is comparable to the sum of the flux of nonpulsar sources and the LHAASO diffuse emission especially above ∼30 TeV. This implies that the LHAASO diffuse emission may dominantly originate from hadronic interactions, either as the truly diffuse emission or unresolved hadronic emitters. Future observations of neutrino telescopes and air-showerγ-ray experiments in the Southern hemisphere are needed to accurately disentangle the source and diffuse emission of the Milky Way.

     
    more » « less
  4. Abstract

    High-energy neutrinos are detected by the IceCube Observatory in the direction of NGC 1068, the archetypical type II Seyfert galaxy. The neutrino flux, surprisingly, is more than an order of magnitude higher than theγ-ray upper limits at measured TeV energy, posing tight constraints on the physical conditions of a neutrino production site. We report an analysis of the submillimeter, mid-infrared, and ultraviolet observations of the central 50 pc of NGC 1068 and suggest that the inner dusty torus and the region where the jet interacts with the surrounding interstellar medium (ISM) may be a potential neutrino production site. Based on radiation and magnetic field properties derived from observations, we calculate the electromagnetic cascade of theγ-rays accompanying the neutrinos. When injecting protons with a hard spectrum, our model may explain the observed neutrino flux above ∼10 TeV. It predicts a unique sub-TeVγ-ray component, which could be identified by a future observation. Jet–ISM interactions are commonly observed in the proximity of jets of both supermassive and stellar-mass black holes. Our results imply that such interaction regions could beγ-ray-obscured neutrino production sites, which are needed to explain the IceCube diffuse neutrino flux.

     
    more » « less
  5. Abstract γ -ray observations of the Cygnus Cocoon, an extended source surrounding the Cygnus X star-forming region, suggest the presence of a cosmic-ray accelerator reaching energies up to a few PeV. The very-high-energy (VHE; 0.1–100 TeV) γ -ray emission may be explained by the interaction of cosmic-ray hadrons with matter inside the Cocoon, but an origin of inverse Compton radiation by relativistic electrons cannot be ruled out. Inverse Compton γ -rays at VHE are accompanied by synchrotron radiation peaked in X-rays. Hence, X-ray observations may probe the electron population and magnetic field of the source. We observed 11 fields in or near the Cygnus Cocoon with the Neil Gehrels Swift Observatory’s X-Ray Telescope (Swift-XRT) totaling 110 ks. We fit the fields to a Galactic and extragalactic background model and performed a log-likelihood ratio test for an additional diffuse component. We found no significant additional emission and established upper limits in each field. By assuming that the X-ray intensity traces the TeV intensity and follows a dN / dE ∝ E − 2.5 spectrum, we obtained a 90% upper limit of F X < 8.7 × 10 −11 erg cm −2 s −1 or <5.2 × 10 −11 erg cm −2 s −1 on the X-ray flux of the entire Cygnus Cocoon between 2 and 10 keV depending on the choice of hydrogen column density model for the absorption. The obtained upper limits suggest that no more than one-quarter of the γ -ray flux at 1 TeV is produced by inverse Compton scattering, when assuming an equipartition magnetic field of ∼20 μ G. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. Abstract

    We discuss implications that can be obtained by searches for neutrinos from the brightest gamma-ray burst (GRB), GRB 221009A. We derive constraints on GRB model parameters such as the cosmic-ray loading factor and dissipation radius, taking into account both neutrino spectra and effective areas. The results are strong enough to constrain proton acceleration near the photosphere, and we find that the single burst limits are comparable to those from stacking analysis. Quasi-thermal neutrinos from subphotospheres and ultra-high-energy neutrinos from external shocks are not yet constrained. We show that GeV–TeV neutrinos originating from neutron collisions are detectable, and urge dedicated analysis on these neutrinos with DeepCore and IceCube as well as ORCA and KM3NeT.

     
    more » « less
  7. Abstract The diffuse flux of cosmic neutrinos has been measured by the IceCube Observatory from TeV to PeV energies. We show that an improved characterization of this flux at lower energies, TeV and sub-TeV, reveals important information on the nature of the astrophysical neutrino sources in a model-independent way. Most significantly, it could confirm the present indications that neutrinos originate in cosmic environments that are optically thick to GeV–TeV γ -rays. This conclusion will become inevitable if an uninterrupted or even steeper neutrino power law is observed in the TeV region. In such γ -ray-obscured sources, the γ -rays that inevitably accompany cosmic neutrinos will cascade down to MeV–GeV energies. The requirement that the cascaded γ -ray flux accompanying cosmic neutrinos should not exceed the observed diffuse γ -ray background puts constraints on the peak energy and density of the radiation fields in the sources. Our calculations inspired by the existing data suggest that a fraction of the observed diffuse MeV–GeV γ -ray background may be contributed by neutrino sources with intense radiation fields that obscure the high-energy γ -ray emission accompanying the neutrinos. 
    more » « less
  8. Abstract We present a broadband X-ray study of W50 (the “Manatee” nebula), the complex region powered by the microquasar SS 433, that provides a test bed for several important astrophysical processes. The W50 nebula, a Galactic PeVatron candidate, is classified as a supernova remnant but has an unusual double-lobed morphology likely associated with the jets from SS 433. Using NuSTAR, XMM-Newton, and Chandra observations of the inner eastern lobe of W50, we have detected hard nonthermal X-ray emission up to ∼30 keV, originating from a few-arcminute-sized knotty region (“Head”) located ≲18′ (29 pc for a distance of 5.5 kpc) east of SS 433, and constrained its photon index to 1.58 ± 0.05 (0.5–30 keV band). The index gradually steepens eastward out to the radio “ear” where thermal soft X-ray emission with a temperature kT ∼ 0.2 keV dominates. The hard X-ray knots mark the location of acceleration sites within the jet and require an equipartition magnetic field of the order of ≳12 μ G. The unusually hard spectral index from the “Head” region challenges classical particle acceleration processes and points to particle injection and reacceleration in the subrelativistic SS 433 jet, as seen in blazars and pulsar wind nebulae. 
    more » « less